Survey Summary Statistics using R

When conducting large-scale trials on samples of the population, it can be necessary to use a more complex sampling design than a simple random sample.

All of these designs need to be taken into account when calculating statistics, and when producing models. Only summary statistics are discussed in this document, and variances are calculated using the default Taylor series linearisation methods. For a more detailed introduction to survey statistics in R, see (Lohr 2022) or (Lumley 2004).

We will use the {survey} package, which is the standard for survey statistics in R. Note that for those who prefer the tidyverse, the {srvyr} package is a wrapper around {survey} with {dplyr} like syntax.

Simple Survey Designs

We will use the API dataset (“API Data Files” 2006), which contains a number of datasets based on different samples from a dataset of academic performance. Initially we will just cover the methodology with a simple random sample and a finite population correction to demonstrate functionality.

library(survey)

data("api")

head(apisrs) |> gt::gt()
cds stype name sname snum dname dnum cname cnum flag pcttest api00 api99 target growth sch.wide comp.imp both awards meals ell yr.rnd mobility acs.k3 acs.46 acs.core pct.resp not.hsg hsg some.col col.grad grad.sch avg.ed full emer enroll api.stu pw fpc
15739081534155 H McFarland High McFarland High 1039 McFarland Unified 432 Kern 14 NA 98 462 448 18 14 No Yes No No 44 31 NA 6 NA NA 24 82 44 34 12 7 3 1.91 71 35 477 429 30.97 6194
19642126066716 E Stowers (Cecil Stowers (Cecil B.) Elementary 1124 ABC Unified 1 Los Angeles 18 NA 100 878 831 NA 47 Yes Yes Yes Yes 8 25 NA 15 19 30 NA 97 4 10 23 43 21 3.66 90 10 478 420 30.97 6194
30664493030640 H Brea-Olinda Hig Brea-Olinda High 2868 Brea-Olinda Unified 79 Orange 29 NA 98 734 742 3 -8 No No No No 10 10 NA 7 NA NA 28 95 5 9 21 41 24 3.71 83 18 1410 1287 30.97 6194
19644516012744 E Alameda Element Alameda Elementary 1273 Downey Unified 187 Los Angeles 18 NA 99 772 657 7 115 Yes Yes Yes Yes 70 25 NA 23 23 NA NA 100 37 40 14 8 1 1.96 85 18 342 291 30.97 6194
40688096043293 E Sunnyside Eleme Sunnyside Elementary 4926 San Luis Coastal Unified 640 San Luis Obispo 39 NA 99 739 719 4 20 Yes Yes Yes Yes 43 12 NA 12 20 29 NA 91 8 21 27 34 10 3.17 100 0 217 189 30.97 6194
19734456014278 E Los Molinos Ele Los Molinos Elementary 2463 Hacienda la Puente Unif 284 Los Angeles 18 NA 93 835 822 NA 13 Yes Yes Yes No 16 19 NA 13 19 29 NA 71 1 8 20 38 34 3.96 75 20 258 211 30.97 6194

Mean

If we want to calculate a mean of a variable in a dataset which has been obtained from a simple random sample such as apisrs, in R we can create a design object using the survey::svydesign function (specifying that there is no PSU using id = ~1 and the finite population correction using fpc=~fpc).

srs_design <- svydesign(id = ~1, fpc = ~fpc, data = apisrs)

This design object stores all metadata about the sample alongside the data, and is used by all subsequent functions in the {survey} package. To calculate the mean, standard error, and confidence intervals of the growth variable, we can use the survey::svymean and confint functions:

# Calculate mean and SE of growth. The standard error will be corrected by the finite population correction specified in the design
srs_means <- svymean(~growth, srs_design)

srs_means
       mean     SE
growth 31.9 2.0905
# Use degf() to get the degrees of freedom
confint(srs_means, df=degf(srs_design))
          2.5 %   97.5 %
growth 27.77764 36.02236

Note that to obtain correct results, we had to specify the degrees of freedom using the design object.

Total

Calculating population totals can be done using the survey::svytotal function in R.

svytotal(~growth, srs_design)
        total    SE
growth 197589 12949

Ratios

To perform ratio analysis for means or proportions of analysis variables in R, we can survey::svyratio, here requesting that we do not separate the ratio estimation per Strata as this design is not stratified.

svy_ratio <- svyratio(
  ~api00,
  ~api99,
  srs_design,
  se=TRUE,
  df=degf(srs_design),
  separate=FALSE
)

svy_ratio
Ratio estimator: svyratio.survey.design2(~api00, ~api99, srs_design, se = TRUE, 
    df = degf(srs_design), separate = FALSE)
Ratios=
         api99
api00 1.051066
SEs=
            api99
api00 0.003603991
confint(svy_ratio, df=degf(srs_design))
               2.5 %   97.5 %
api00/api99 1.043959 1.058173

Proportions

To calculate a proportion in R, we use the svymean function on a factor or character column:

props <- svymean(~sch.wide, srs_design)

props
             mean     SE
sch.wideNo  0.185 0.0271
sch.wideYes 0.815 0.0271
confint(props, df=degf(srs_design))
                2.5 %    97.5 %
sch.wideNo  0.1316041 0.2383959
sch.wideYes 0.7616041 0.8683959

For proportions close to 0, it can be that survey::svyciprop is more accurate at producing confidence intervals than confint.

Quantiles

To calculate quantiles in R, we can use the survey::svyquantile function. Note that this function was reworked in version 4.1 of {survey}, and prior to this had different arguments and results. The current version of svyquantile has an qrule which is similar to the type argument in quantile, and can be used to change how the quantiles are calculated. For more information, see vignette("qrule", package="survey").

svyquantile(
  ~growth,
  srs_design,
  quantiles = c(0.025, 0.5, 0.975),
  ci=TRUE,
  se=TRUE
)
$growth
      quantile ci.2.5 ci.97.5        se
0.025      -16    -21     -12  2.281998
0.5         27     24      31  1.774887
0.975       99     84     189 26.623305

attr(,"hasci")
[1] TRUE
attr(,"class")
[1] "newsvyquantile"

Summary Statistics on Complex Survey Designs

Much of the previous examples and notes still stand for more complex survey designs, here we will demonstrate using a dataset from NHANES (“National Health and Nutrition Examination Survey Data” 2010), which uses both stratification and clustering:

data("nhanes")

head(nhanes) |> gt::gt()
SDMVPSU SDMVSTRA WTMEC2YR HI_CHOL race agecat RIAGENDR
1 83 81528.77 0 2 (19,39] 1
1 84 14509.28 0 3 (0,19] 1
2 86 12041.64 0 3 (0,19] 1
2 75 21000.34 0 3 (59,Inf] 2
1 88 22633.58 0 1 (19,39] 1
2 85 74112.49 1 2 (39,59] 2

To produce means and standard quartiles for this sample, taking account of sample design, we can use the following:

nhanes_design <- svydesign(
  data = nhanes,
  id = ~SDMVPSU, # Specify the PSU/cluster column
  strata = ~SDMVSTRA,  # The stratification column
  weights = ~WTMEC2YR,  # The weighting column
  nest = TRUE  # Allows for PSUs with the same name nested within different strata
)

svymean(~HI_CHOL, nhanes_design, na.rm=TRUE)
           mean     SE
HI_CHOL 0.11214 0.0054
svyquantile(
  ~HI_CHOL,
  nhanes_design,
  quantiles=c(0.25, 0.5, 0.75),
  na.rm=TRUE,
  ci=TRUE
)
$HI_CHOL
     quantile ci.2.5 ci.97.5        se
0.25        0      0       1 0.2358596
0.5         0      0       1 0.2358596
0.75        0      0       1 0.2358596

attr(,"hasci")
[1] TRUE
attr(,"class")
[1] "newsvyquantile"

In R, we can perform domain estimations of different sub-populations by passing our required survey function to the svyby function. svyby can also take additional options to pass to the function, for example here we pass na.rm=TRUE and deff=TRUE to svymean:

svyby(~HI_CHOL, ~race, nhanes_design, svymean, na.rm=TRUE, deff=TRUE)
  race    HI_CHOL          se DEff.HI_CHOL
1    1 0.10149167 0.006245843     1.082805
2    2 0.12164921 0.006604134     1.407850
3    3 0.07864006 0.010384645     2.091258
4    4 0.09967861 0.024666227     3.098368
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.4.0 (2024-04-24)
 os       Ubuntu 22.04.5 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  C.UTF-8
 ctype    C.UTF-8
 tz       UTC
 date     2024-10-10
 pandoc   3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 ! package * version date (UTC) lib source
 P survey  * 4.4-2   2024-03-20 [?] RSPM (R 4.4.0)

 [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
 [2] /opt/R/4.4.0/lib/R/library

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────

References

“API Data Files.” 2006. California Department of Education. https://web.archive.org/web/20060813165101/http://api.cde.ca.gov/datafiles.asp.
Lohr, Sharon L. 2022. Sampling: Design and Analysis. 3rd ed. CRC Press, Taylor & Francis Group.
Lumley, Thomas. 2004. “Analysis of Complex Survey Samples.” Journal of Statistical Software 9 (8): 1–19. https://doi.org/10.18637/jss.v009.i08.
“National Health and Nutrition Examination Survey Data.” 2010. Centers for Disease Control; Prevention (CDC). https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=laboratory&CycleBeginYear=2009.